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Abstract

In this report, we investigated recent works in using Bayesian Convolutional Neural
Networks with variational inference to perform image classification tasks. Based
on ideas introduced by Shridhar et al. (1), we reproduced the Bayesian LeNet
model and tested the performance of our network on image classification tasks with
MNIST, CIFAR-10, and CIFAR-100 datasets. We as well compared the validation
accuracies generated with Bayesian approach to those generated with frequentist
inference under the LeNet architecture. At the end of the paper, we discussed
possible reasons for the discrepancies and provided promising future works that
can potentially improve the model performance in the original paper.

1 Introduction

In the field of image classifications, convolutional neural networks (CNNs) have achieved a series of
breakthroughs in recent years, even surpassing human-level accuracy in tasks such as the ImageNet
Challenge (2; 3; 4). However, CNNs require a large amount of data for regularisation and fail to
express uncertainty which would result in overconfident decisions on small datasets or in regions
with little or no data (1; 5; 6). In reality, labeled data may be hard and expensive to collect, and
in some applications there is no large amount of data readily available. By introducing probability
distribution over the network parameters, Bayesian CNNs can easily learn from small datasets, offer
uncertainty estimates, and give a regularization effect to the network, which makes the network robust
to overfitting (1; 5; 6).

The concept and attempt in incorporating Bayesian methods into neural networks was first studied in
1990s (7), but its theoretical framework and application were successfully implemented in 2015 by
Gal and Ghahramani (8). Until now, researchers have developed numerous approximate inference
procedures for Bayesian deep learning, including Laplace approximation (9), MC dropout (5), and
variational inference (10; 11; 12), whereby the authors in (1) proposed the novel Bayesian CNN
model based on a variational inference method called Bayes by Backprop (12).

As there are many great works and researches on Bayesian CNNs, we would review past influential
literature in the next section. We selected two major topics - Bayes by Backprop, and Local
Reparameterization Trick- that were most relevant to the development of the original paper. The
concepts and ideas from the previous works were used in building our final model to evaluate results.
The rest of the paper is organized as follows. In section 3 we will describe the MNIST, CIFAR-10,
and CIFAR-100 datasets, and the framework we used for our implementations. In Section 4 we will
discuss results and show how does our Bayesian CNN compared to its equivalent frequentist CNN.
Last, our conclusion will point out possible reasons for discrepancies between our results and those
of the authors of the original paper, and we would propose few considerations that must be accounted
when employing Bayesian CNN.



2 Related Work

2.1 Bayes by Backprop

Bayes by Backprop is a variational inference method introduced by Blundell et al. for learning
a probability distribution on the parameters in feedforward neural networks (12). Fortunato et al.
further applied the algorithm in recurrent neural networks (13). Given a set of training samples
D = (xi, yi)i, consider a neural network as a probabilistic model P (y|x,w), where w is the set
of parameters or weights, Bayesian inference for neural networks aims to calculate the posterior
distribution P (w|D), and we expect to answer predictive queries when given test data x̂, which is

P (ŷ | x̂) = EP (w|D)[P (ŷ | x̂,w)] (1)

However, the true posterior is intractable, thus an parameter θ of an approximation distribution on the
weights qθ(w|D) is defined. The variational learning seeks to find the θ that makes the approximation
distribution as close to the true posterior as possible, where the closeness can be measured with
Kullback-Leibler (KL) divergence.

KL [qθ(w|D)‖p(w|D)] =
∫
qθ(w|D) log

qθ(w|D)
p(w|D)

dw (2)

⇒ θopt = argmin
θ

KL [qθ(w|D)‖p(w|D)]

= argmin
θ

∫
qθ(w|D) log

qθ(w|D)
p(w)p(D|w)

dw

= argmin
θ

KL [qθ(w|D)‖p(w)]

− Eq(w|θ)[log p(D|w)] + log p(D)

(3)

The log p(D) term is constant in the optimization process. Consequently, the resulting cost function,
F(D, θ), also known as variational free energy (14; 15; 16) or the expected lower bound (17; 14; 18),
can be break into two terms: KL [qθ(w|D)‖p(w)] the complexity cost, and Eq(w|θ)[log p(D|w)] the
likelihood cost. The cost function can as well be reinterpreted as a minimum description length loss
function in information theoretic prospect (10; 11).

F(D, θ) = KL [qθ(w|D)‖p(w)]− Eq(w|θ)[log p(D|w)] (4)

With stochastic variational method (11; 12), we sample w(i), the ith Monte Carlo sample draw, from
the variational posterior qθ(w|D) and approximate the exact cost in equation (4) with

F(D, θ) ≈
n∑
i=1

log qθ(w
(i)|D)− log p(w(i))− log p(D|w(i)) (5)

where n is the number of draws.

2.2 Local Reparameterization Trick

Local reparameterization trick developed by Kingma et. al (19) was utilised by the authors in (1)
for Bayesian CNNs. When we translate global uncertainty about parameters into a form of local
uncertainty which is independent across examples, such type of reparameterization process is called
local reparameterization trick. Assume the variational posterior probability distribution

qθ(wijhw|D) = N (µijhw, αijhwµ
2
ijhw) (6)

where i is the input layer, j is the output layers, h and w are the height and width of any given filter
respectively. For a factorized Gaussian posterior on the weights, the posterior for the activations, b, is
also factorized Gaussian (19). The authors in (1) followed (19) in sampling layer activation b, the
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implied Gaussian distribution directly, rather than sampling the Gaussian weights and compute the
resulting activations. The convolutional layer activations b is thus

bj = Ai ∗ µi + εj �
√
A2
i ∗ (αi � µ2

i ) , εj ∼ N (0, 1) (7)

whereAi is the receptive field, ∗ is the convolutional operation, and� is the common component-wise
multiplication typically used in CNNs. With this local reparameterization trick, the algorithm can
yield a gradient estimator more computationally efficient, also leading to an estimator with lower
variance (19).

3 Methods

3.1 Sequential Convolutional Operations for Mean and Variance

We followed the algorithm proposed by the authors in (1) in updating the variational posterior
distribution qθ(w|D), where we applied two convolutional operations and only one parameter is
updated per convolutional operation.

• Treat the output b as an output of a CNN updated by frequentist inference.
1. Optimize with Adam towards a single point-estimate, and make sure the testing accu-

racy is increasing
2. Interpret the single point-estimate as the mean µijwh of the variational posterior

probability distributions q(w|D)
• Learn the variance αijhwµ2

ijhw of the variational posterior distribution, where αijhw is the
only parameter needs to be updated

In accordance with the original authors, the activation function we used is Softplus, which is defined
as follows:

Softplus(x) =
1

β
· log(1 + exp(β · x)) (8)

By default, β = 1. Softplus is a smooth approximation to the rectifier, but unlike the wildly and
commonly used ReLU function, Softplus function never becomes zero, which is a good property in
ensuring that the variance of our variational posterior probability distribution would never become
zero.

3.2 Objective Function

The approximated tractable cost function in equation (5), can be derived and explained in greater
detail as follows after taking equation (6) into account:

1. Variational Posterior
qθ(w

(i)|D) =
∏
i

N (wi|µ, σ2) (9)

⇒ log(qθ(w
(i)|D)) =

∑
i

logN (wi|µ, σ2) (10)

2. Prior
p(w(i)) =

∏
i

N (wi|0, σ2
p) (11)

⇒ log(p(w(i))) =
∑
i

logN (wi|0, σ2
p) (12)

3. Likelihood
log(p(D|w(i))) (13)
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3.3 Datasets

We reproduced the model based on the idea of (1), and we were motivated to explore the adaptation
and performance of our network on image classification tasks with the MNIST, CIFAR-10, and
CIFAR-100 datasets. The first two datasets are often considered small datasets in terms of the number
of labeled classes and sample size, while the last one is normally considered as a large dataset.

3.3.1 MNIST

The MNIST database of handwritten digits is a subset of a larger set available from NIST, having
60,000 examples in training set, and 10,000 examples in test set. The digits have been size-normalized
and centered in a fixed-size image (20).

3.3.2 CIFAR-10, CIFAR-100

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset, which were
collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton (21). The former consists of 60,000
color images of size 32×32 divided into 10 classes, with 50,000 training images and 10,000 test
images. They are both widely used datasets and are very much alike in nature, except that the later
has 100 classes with 600 images within each, and split into 500 training images and 100 validation
images per class.

3.4 Final Model

Given limited time and computational resources, we selected LeNet (22) as our network architecture
in testing for both Bayesian and frequentist approach. The architecture of our model is summarized
in table 1 below.

layer type width stride padding input shape nonlinearity

convolution(5x5) 6 1 0 M x 1 x 32 x 32 Softplus
max-pooling(2x2) 2 0 M x 6 x 28 x 28
convolution(5x5) 16 1 0 M x 1 x 14 x 14 Softplus
max-pooling(2x2) 2 0 M x 16 x 10 x 10
fully-connected 120 M x 400 Softplus
fully-connected 84 M x 120 Softplus
fully-connected 10 M x 84

Table 1: Modified LeNet Architechture for Our Study (1)

4 Results and Discussion

4.1 Model Results

Under Bayesian approach, the training accuracy and test accuracy achieved after 200 epochs by our
model for classifying images from MNIST dataset is around 99.10% and 98.23% respectively. The
test accuracy was close to that of the original model which achieved 98%(1). We tested the same
architecture, i.e. the LeNet without Bayesian inference and get training accuracy of 99.98% and
validation accuracy 98.97%. The training and validation processes are presented in the Figure 1
below.

From Figure 1, 2, and 3, we may discover that incorporating Bayesian inference into CNN makes the
training process slower, as the accuracies for both training and validation all starts out at lower levels
compared to the frequentist approach. We need to make initialization for the mean and variance
parameters in the variational posterior probability distribution, and bad initialization values may
result in longer time to converge to the optimum solution. The accuracies for the CIFAR-100 dataset
manifested the problem even obviously, as the training process showed a plateau pattern at the
beginning.

4



To make a comprehensive comparison, we summarized the accuracies generated in our experiments,
and compared to those of the original papers (1) in table 2. As the complexity of the underlying data
increases, our model generate both lower training and validation accuracies under Bayesian approach
compared to the results of the original paper. However, we can nevertheless observe from our results
that the frequentist LeNet approach have large gaps between training and validation error, which is a
possible sign of overfitting. While the validation accuracies are lower with Bayesian approach under
our experiments, they exhibit robustness against overfitting.

MNIST CIFAR-10 CIFAR-100

Our Bayesian LeNet (VI) 98.23 (99.10) 53.51(55.30) 23.13 (26.44)
Our Frequentist LeNet 98.97 (99.98) 65.02(74.95) 33.89 (42.91)
Original Paper Bayesian LeNet (VI) 98 69 31
Original Paper Frequentist LeNet 98 68 33

Table 2: Validation & Training Accuricies: Comparison of validation accuricies, along with
training accuricies listed in the parenthesis between different architectures and dataset. All values are
in percentage.

Figure 1: Accuracies of Bayesian LeNet and Frequentist LeNet on MNIST dataset

Figure 2: Accuracies of Bayesian LeNet and Frequentist LeNet on CIFAR-10 dataset

4.2 Discussion

This work was limited by computation power and time to test for different architectures. There are
several further efforts that can be made to improve the results.

• Since the algorithm includes parameters initialization for the variational posterior proba-
bility distribution, we can make further attempt to discover methods in generating good
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Figure 3: Accuracies of Bayesian LeNet and Frequentist LeNet on CIFAR-100 dataset

initialization values. It is worth discussing to how much extent these randomly initialized
values can affect the convergence rate of a Bayesian CNN model.

• The original paper incorporated variational inference with several CNN architectures, such
as AlexNet and different drop out measures. If the the computation resource permits, it is
worthwhile trying in integrating Bayesian approach to other more powerful architectures,
such as residual network, which surpassed the human level performance in 2015 ImageNet
Challange (3).

Another promising future work is to use different distributions, other than Gaussian, in approximating
the variational distribution. Gal et. al in 2016 approximated the intractable posterior with Bernoulli
variational distribution and proposed the idea of casting dropout as approximate Bernoulli variational
inference under neural networks (8). However, they did not place prior distributions p(w) on the
CNN’s parameters. As most deep learning problems are data dependent, a neural network with an
exponential distribution as prior may potentially solve problems in certain fields. It is promising to
apply the Bayesian CNN architectures in fields in addition to image classification.
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