Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

5 Feb. 2021

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept

Data Exploration The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Q & A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Link to the complete code and analysis : https://yipeichan.github.io/claims.html Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Q & A

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Project Concept

Problem to solve :

How can we predict the number of claims a policyholder would file, given his age, his car brand, and so on?

- My approach to solve the problem :
 - 1. Explore the structure and properties of the dataset
 - 2. Choose proper models to answer the question
- Methodology :

After exploring the data with visualizations,

- 1. Generalized Poisson Linear Model
- 2. Poisson Lasso Regression, Poisson Ridge Regression
- 3. Gradient Boosting Model
- ► Goals achieved by this project :
 - 1. Explored relationships between the risk factors and ranked the influences of risk factors on claim numbers
 - 2. Investigated the efficacy of using modern machine learning algorithms to do P&C ratemaking
 - 3. Make your hiring decision easier!

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept

Data Exploration The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Data Exploration- The Dataset

CASdatasets Package :

Proposed by Christophe Dutang 1 on OpenML

- Used in this study is freMTPL2freq dataset :
 - 1. Risk features were collected from motor third-party liability policies in France
 - 2. 678,013 samples, 12 explanatory variables

Variable Name	Description	Key
IDpol	Policy ID	(link with the claims dataset)
ClaimNb	Number of claims during the exposure period	
Exposure	Period of exposure (in years)	
VehPower	Power of the car	
VehAge	Vehicle age (in years)	
DrivAge	Driver age (in years)	
BonusMalus	Bonus/malus, between 50 and 350	<100: bonus; >100: malus in France
VehBrand	Car brand	Unknown categories
VehGas	Car gas	Diesel or regular
Area	Density value of the city where the car driver lives in	"A" for rural to "F" for urban centre
Density	Density of inhabitants of the city where the car driver lives in	Number of inhabitants per square-kilometer
Region	Policy region in France	

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept

Data Exploration The Dataset

Data Visualization Model & Prediction

Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Q & A

1. https://www.openml.org/d/41214

- Among the 678,013 policies, there were 34,060 filed claims, i.e. 5.02% notified claims.
- Potential Problems :
 - 1. Mean should equal to Variance in Poisson distribution \Rightarrow Use Negative binomial if overdispersed
 - More 0s than are expected in Poisson regression ?
 ⇒ Incorporate the logit model for predicting excess 0s
 - Varied exposure periods (observations not comparable)
 ⇒ Add offset of exposure term to the model

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

- Exposure : duration of the insurance coverage
- Claim frequency : claim count per unit of exposure
- Did driver age influence frequency ?
 - 1. The highest mean frequency happens at age 94
 - 2. Drivers between age 18 to 23 tend to have higher mean frequency

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Did vehicle brand and age influence frequency?

Vehicle brand and age on frequency

Third-Party Liability Claims Analysis and Prediction Yi-Pei Chan Project Concept Data Exploration The Dataset Data Visualization

Motor

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

-inal Validation

Q & A

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

What is the relationship between area and bonus-malus?

Area on BonusMalus

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト … ヨ

Motor

Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Model and Prediction - Poisson GLM

Before training the models, randomly select 30% of the data and set aside as testing set to find the best fitting model

Poisson GLM Model

```
glm(formula = ClaimNb - VehPower + VehAge + DrivAge + BonusMalus +
VehBrand + VehGas + Density + Region + Area, family = "poisson",
data = data[(data$data == "train"), ], offset = log(Exposure))
```

 Statistically significant variables (Signif. level 1%) : VehAge, DrivAge, BonusMalus, VehPower, Density, etc.

Overdispersion Test

```
Overdispersion test

data: poissonglm

z = 3.9191, p-value = 4.444e-05

alternative hypothesis: true alpha is greater than 0

sample estimates:

alpha

0.243334
```

- 1. Small p-value :The test confirms the overdispersion
- 2. The alpha value very close to zero : Overdispersion may not be a serious concern here

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration The Dataset Data Visualization

Model & Prediction

```
Poisson GLM
Poisson Lasso & Ridge
Gradient Boosting
Model
```

Final Validation

Model and Prediction - Poisson GLM

 Hanging rootogram : Only 2 count is a little under predicted

Poisson

(日)

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration The Dataset

Data Visualization

Model & Prediction

Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Model & Prediction - Poisson Lasso & Ridge Regression

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Model & Prediction - Gradient Boosting Model

Third-Party Liability Claims Analysis and Prediction

Motor

Yi-Pei Chan

Project Concept Data Exploration The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting

Model

Final Validation

Q & A

var	rel.inf
BonusMalus	17.014808
Region	15.372979
VehAge	14.459134
DrivAge	13.862481
VehBrand	12.328304
VehPower	10.782009
Density	8.396521
VehGas	4.728894
Area	3.054871

▲御を▲田を▲田を 田 のべ⊙

Final Validation

Use the test set to find the best fitting model

► The claim number prediction MAE for test set with

- 1. Poisson GLM : 0.09905573
- 2. Poisson Ridge GLM : 0.09988506
- 3. Poisson Lasso GLM : 0.09996999
- 4. Gradient Boosting Model : 0.09630762

Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration

The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Final Validation

Evaluation of the Predicted Number of Claims in the Test Set

Motor Third-Party Liability Claims Analysis and

Prediction

Final Validation

Real claim numbers in the test set are curved in black lines below

Motor

Third-Party Liability Claims

> Analysis and Prediction

Yi-Pei Chan

Q & A

Link to the complete code and analysis : https://yipeichan.github.io/claims.html Motor Third-Party Liability Claims Analysis and Prediction

Yi-Pei Chan

Project Concept Data Exploration

The Dataset Data Visualization

Model & Prediction Poisson GLM Poisson Lasso & Ridge Gradient Boosting Model

Final Validation

Q & A

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●