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Abstract—In this work, we summarized the concepts and
methods done in the original paper [1] and reviewed related
influential literature. We further reproduced the model and
evaluated the performance of the model on CIFAR-10 dataset,
where we achieved 84.85% of test accuracy. At the end of the
paper, we discussed possible reasons for discrepancies in results
between our model and those of the original paper. We also
provided promising future works that can potentially improve
the model performance in the original paper.

I. INTRODUCTION

Deep convolutional neural networks (CNN) have demon-
strated a series of breakthroughs in the field of image classifi-
cations in recent years, even surpassing human-level accuracy
in tasks such as the ImageNet Challenge [2,3]. The state-
of-the-art architectures have become popular for their ability
to learn feature representations well from raw data, without
having to hand-design explicit features [4]. Integrating from
low level features such as edges, color, gradient orientation
to high level abstract features like complex shapes and ob-
jects [5], these neural networks classify in a comprehensive
end-to-end fashion. Several works have suggested that the
depth of the network is an important factor in achieving
good classification performance, as deeper networks can learn
more abstract features [6]. While deep networks may achieve
lower classification error rates, they are harder to train with
increasing depth mainly because of the following two reasons:
Vanishing or exploding gradients [7] and harder optimization
[8].

One effective solution for the problems of deep CNNs is
to use Residual Networks [9]. In addition, residual networks
are suggested to be powerful tools for image classification, as
demonstrated in ILSVRC 2015 where the models achieved
a top-5 error rate of 3.57% [9]. The greatest difference
between the aforementioned two architectures is that Residual
Networks possess shortcut connections. Unlike normal convo-
lutional layers, these shortcut connections persist throughout
the model and serve as a means in generating gradients with
back propagation.

As there are abundance of works and researches on image
classification, we would review past influential literature in
the next section. We selected two major topics - residual
networks, and visual attention- that were most relevant to the
development of the original paper. The concepts and ideas

from the past works were used in building our final model to
evaluate results. The rest of the paper is organized as follows.
In section 3 we will describe the CIFAR-10 dataset, and the
framework we used for our implementations. In Section 4 we
will discuss results and show how does our Residual Attention
Network compared to its equivalent Convolutional Neural
Network. Last, our conclusion will point out possible reasons
for discrepancies between our results and those of the authors
of the original paper, and we would propose few considerations
that must be accounted when employing Residual Attention
Network.

II. RELATED WORK

A. Residual Networks

The residual network, also known as ResNet, was intro-
duced by He et al. in 2015 [9]. The primary idea of the work
was incorporating the residual connection into convolutional
neural networks, which was an idea similar to its predecessor,
Highway Network, and Inception with shortcut connections.
The residual connections between blocks in the sequential
layers provide a clear path for gradients to back propagate
to early layers of the network and thus made training of
deep networks more feasible by avoiding vanishing gradient
problem or dead neurons. In addition, the residual blocks
that allow additive interaction between input and output of
two convolution layers make the learning process faster. The
residual unit originally introduced by the authors in [9] is
described as in equation 1.

y = F (x, {Wi}) + x (1)

In [9], the authors as well adopted batch normalization,
which was implemented right after each convolution and
before activation, as it is believed to accelerate the training
process by reducing internal covariate shift [11]. However,
[9] did not use dropout, as they followed the idea that batch
normalization regularizes the model and reduces the need
for dropout [11]. Later, there are derivations and improved
researches based on the idea of [9] with variations of the
residual architecture. For example, He et al. in 2016 improved
test error on classification on the CIFAR-10 dataset by using
identity mappings as the skip connections and after-addition
activation.



Fig. 1. ResNet Architecture [12]

B. Visual Attention

Attention mechanism was originally introduced with the
aim of making neural networks focus on different parts of
their input [13]. The derivation of the idea was successfully
implemented in Natural Language Processing to do machine
translation by Bahdanau et al.[14] at the beginning. For
image classification applications, three common approaches:
sequential process, region proposal and control gates, were
used to implement top-down attention mechanism.

• Sequential process by its name operates in a sequential
fashion [15,16,17], allowing end-to-end optimization us-
ing recurrent neural networks and long short-term mem-
ory that are able to capture different kinds of attention in
a goal-driven way[1].

• Region proposal has been used in various image detection
researches [18]. Unlike the image detection process,
applying region proposal in image classification would
require an additional region proposal stage added before
feedforward classification, and unsupervised learning is
often used to meet such requirement. For example, Xiao
et.al in 2014 avoided using expensive annotations like
bounding box or part information from end-to-end for
fine grained image analysis [19].

• Control gates have been extensively used in long short-
term memory to control the flow of information within
the decision process. When applying attention in im-
age classification, control gates for neurons use the top
information to guide bottom-up feedforward process in
updating information during training processes [15, 21].

Recent researches for soft attention have developed to make
it possible to be trained end-to-end for convolutional network
[22,23], and the bottom-up top-down feedforward structure has
been successfully applied to human pose estimation[24]. The
authors of the original paper were inspired by the idea and
utilized a similar structure in their work. The framework is
special in that it can in a single feedforward process mimic
not only bottom-up feedforward process in producing low
resolution feature maps with strong semantic information but

also a top-down attention feedback producing dense features
to inference on each pixel [1].

The stacked structure is a common approach of mixed
attention mechanism which is believed to capture different
types of attention and refine attention for complex images with
its incremental nature; however, directly stacking Attention
Modules would lead to performance drop. Therefore, the
authors proposed attention residual learning mechanism, and
stacked multiple Attention Modules in residual network.

III. METHODS

A. Dataset

We reproduced the model based on the idea of [1]. Given
limited time and computational resources, we were motivated
to explore the adaptation and performance of our network on
image classification tasks with the CIFAR-10 datasets.

The CIFAR-10 is labeled subsets of the 80 million tiny
images dataset, which were collected by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton [25]. It is a widely used
dataset, consisting of 60,000 color images of size 32×32
divided into 10 classes, with 50,000 training images and
10,000 test images.

Fig. 2. Images randomly sampled from CIFAR-10

B. Final Model

The architecture of our final model resembles the idea of the
original paper. We as well adopted the same hyperparameters
as the original work, which are {p = 1, t = 2, r = 1} [1].
The respective meanings for the three hyperparameters are as
following,

• p: the number of pre-processing Residual Units before
splitting into trunk branch and mask branch

• t: the number of Residual Units in trunk branch
• r: the number of Residual Units between adjacent pooling

layer in the mask branch



The output loss calculated by the final layer were computed
as a softmax function for a cross-entropy loss. The softmax
function is defined as follow and it normalizes scores across
all classes to sum to 1:

S(x)i =
exi∑
j e

xj
(2)

The cross-entropy loss is defined as:

Loss j = − log
(
Softmax

(
xTwj

))
(3)

which is feasible for us to backpropagate the loss. The
optimizer used in our model to minimize the softmax cross
entropy loss was Adam and the learning rate was set to be
0.001.

IV. RESULTS AND DISCUSSION

A. Model Results

The training accuracy and test accuracy achieved by our
model for classifying images from CIFAR-10 dataset is around
98.40% and 84.85% respectively after 100 epochs. The test
accuracy was lower than that of the original model which
achieved test error rates as low as 3.9% [1].
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Fig. 3. Accuracies and Costs from our reproduced model

B. Discussion

This work was limited by computation power and time to
test for different architectures. There are several further efforts
that can be made to improve the results.

• The original paper test several combination of values and
achieved the best testing error by using {p = 2, t = 4, r =
3}. We may try out different combinations to achieve
better potential results when the computation resource
permits.

• Since each residual block consists of multiple layers of
convolutional layer, it is worthwhile testing to know what

is the optimal amount of convolutional layers to put
whithin one residual block.

• As the architecture is still new, there is no pre-trained
model to serve as a starting point. An equally important
question may be whether the initial convolution layer
is not extracting the features of interest and whether
the residual connections actually amplified the negative
effects of poor initialization.

There are also some promising ideas to explore based on the
paper. From the original work, the authors used maxpooling
for down sample and used patching for up sample. The module
is illustrated in Fig.4. It is very likely to improve performance
by using autoencoder or variational autoencoder which turns
the down sampling and up sampling into trainable processes
and hopefully a more flexible network. However, this approach
may be computational expensive for the increase in the number
of tuning parameters.

Fig. 4. The bottom-up top-down structure [1]

Another promising future work is to use different residual
modules, such as the ResNeXt, which had better performance
than the original ResNet and is a homogeneous, multi-branch
architecture that requires a few hyperparameters [26].
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